0. La Electricidad
Historia de la Electricidad
Video Historia de la Electricidad 1 y 2
1. Introducción a la Electrónica
2. Antecedentes históricos
3.Video. Historia de la Electrónica Capitulo 1-2-3 (Transistorized!)
4. Avances recientes
0. LA ELECTRICIDAD
- Esta palabra deriva de la voz griega elektron, que significa ámbar. - La electricidad es una forma de energía que sólo se puede apreciar por los efectos que produce.
- La electricidad existe en todo: en nuestro cuerpo, en el aire que respiramos, en el libro que leemos, en los objetos, etc.
-El estudio de la electricidad en reposo recibe el nombre de electrostática y el estudio de la electricidad en movimiento se llama electrodinámica.
HISTORIA DE LA ELECTRICIDAD
Thales de Mileto (630−550 AC) fue el primero, que cerca del 600 AC, conociera el hecho de que el ámbar, al ser frotado adquiere el poder de atracción sobre algunos objetos.
Sin embargo fue el filósofo Griego Teofrasto (374−287 AC) el primero, que en un tratado escrito tres siglos después, estableció que otras sustancias tienen este mismo poder, dejando así constancia del primer estudio científico sobre la electricidad.
Siglo XVII
La Revolución científica que se venía produciendo desde Copérnico en la astronomía y Galileo en la física no va a encontrar aplicaciones muy tempranas al campo de la electricidad, limitándose la actividad de los pocos autores que tratan sobre ella a la recopilación baconiana de datos experimentales, que por el momento no alcanzan a inducir modelos explicativos también en la era de la electricidad se produjeron grandes cambios importantes.
En 1600, la Reina Elizabeth I ordena al Físico Real William Gilbert (1544−1603) estudiar los imanes para mejorar la exactitud de las Brújulas usadas en la navegación, siendo éste trabajo la base principal para la definición de los fundamentos de la Electrostática y Magnetismo. A través de sus experiencias clasificó los materiales en eléctricos (conductores) y aneléctricos (aislantes) e ideó el primer electroscopio. Descubrió la imantación por influencia, y observó que la imantación del hierro se pierde cuando se calienta al rojo. Estudió la inclinación de una aguja magnética concluyendo que la Tierra se comporta como un gran imán. Gilbert fue el primero en aplicar el término Electricidad del Griego "elektron" = ámbar. Gilbert es la unidad de medida de la fuerza magnetomotriz.
(1660) Las investigaciones de Gilbert fueron continuadas por el físico alemán Otto von Guericke (1602-1686). En las investigaciones que realizó sobre electrostática observó que se producía una repulsión entre cuerpos electrizados luego de haber sido atraídos. Ideó la primera máquina electrostática y sacó chispas de un globo hecho de azufre, lo cual le llevó a especular sobre la naturaleza eléctrica de los relámpagos. Fue la primera persona que estudió la luminiscencia.
Siglo XVIII: la Revolución industrial
La crisis de la conciencia europea renueva el panorama intelectual de finales del siglo XVII a principios del siglo XVIII y abre las puertas al llamado Siglo de las luces o de la Ilustración. Instituciones científicas de nuevo cuño, como la Royal Academy inglesa, y el espíritu crítico que los enciclopedistas franceses extienden por todo el continente, conviven con el inicio de la Revolución industrial. No obstante, la retroalimentación entre ciencia, tecnología y sociedad, aún no se había producido. Aparte del pararrayos, ninguna de las innovaciones técnicas del siglo tuvo que ver con las investigaciones científicas sobre la electricidad, hecho que no es exclusivo de este campo: la mismísima máquina de vapor precedió en cien años a la definición de la termodinámica por Sadi Carnot.
(1729) El físico inglés Stephen Gray (1666-1736) estudió principalmente la conductividad eléctrica de los cuerpos y, después de muchos experimentos, fue el primero en 1729 en transmitir electricidad a través de un conductor. En sus experimentos descubrió que para que la electricidad, o los "efluvios" o "virtud eléctrica", como él la llamó, pudiera circular por el conductor, éste tenía que estar aislado de tierra. Posteriormente estudió otras formas de transmisión y, junto con los científicos G. Wheler y J. Godfrey, clasificó los materiales en conductores y aislantes de la electricidad.
(1733) El científico francés Charles François de Cisternay Du Fay (1698-1739) al enterarse de los trabajos de Stephen Gray, dedicó su vida al estudio de los fenómenos eléctricos. Du Fay, entre otros muchos experimentos, observó que una lámina de oro siempre era repelida por una barra de vidrio electrificada. Publicó sus trabajos en 1733 siendo el primero en identificar la existencia de dos tipos de cargas eléctricas (denominadas hoy en día positiva y negativa), que él denominó carga vítrea y carga resinosa, debido a que ambas se manifestaban de una forma al frotar, con un paño de seda, el vidrio (carga positiva) y de forma distinta al frotar, con una piel, algunas substancias resinosas como el ámbar o la goma (carga negativa).
(1745) El físico holandés Pieter van Musschenbroek (1692-1761), que trabajaba en la Universidad de Leiden, efectuó una experiencia para comprobar si una botella llena de agua podía conservar cargas eléctricas. Esta botella consistía en un recipiente con un tapón al cual se le atraviesa una varilla metálica sumergida en el líquido. La varilla tiene una forma de gancho en la parte superior al cual se le acerca un conductor cargado eléctricamente. Durante la experiencia un asistente separó el conductor y recibió una fuerte descarga al aproximar su mano a la varilla, debida a la electricidad estática que se había almacenado en la botella. De esta manera fue descubierta la botella de Leyden y la base de los actuales condensadores eléctricos, llamados incorrectamente capacitores por anglicismo.
(1747) Sir William Watson (1715-1787), médico y físico inglés, estudió los fenómenos eléctricos. Realizó reformas en la botella de Leyden agregándole una cobertura de metal, descubriendo que de esta forma se incrementaba la descarga eléctrica. En 1747 demostró que una descarga de electricidad estática es una corriente eléctrica. Fue el primero en estudiar la propagación de corrientes en gases enrarecidos.
En 1752, Benjamín Franklin (1706−1790) demostró la naturaleza eléctrica de los rayos. Desarrolló la teoría de que la electricidad es un fluido que existe en la materia y su flujo se debe al exceso o defecto del mismo en ella. Invento el pararrayos. En 1780 inventa los lentes Bifocales.
En 1776, Charles Agustín de Coulomb (1736−1806) inventó la balanza de torsión con la cual, midió con exactitud la fuerza entre las cargas eléctricas y corroboró que dicha fuerza era proporcional al producto de las cargas individuales e inversamente proporcional al cuadrado de la distancia que las separa. Coulomb es la unidad de medida de Carga eléctrica.
En 1800, Alejandro Volta (1745−1827) construye la primera celda Electrostática y la batería capaz de producir corriente eléctrica. Su inspiración le vino del estudio realizado por el Físico Italiano Luigi Galvani (1737−1798) sobre las corrientes nerviosas−eléctricas en las ancas de ranas. Galvani propuso la teoría de la Electricidad Animal, lo cual contrarió a Volta, quien creía que las contracciones musculares eran el resultado del contacto de los dos metales con el músculo. Sus investigaciones posteriores le permitieron elaborar una celda química capaz de producir corriente continua, fue así como desarrollo la Pila. Volt es la unidad de medida del potencial eléctrico (Tensión).
Desde 1801 a 1815, Sir Humphry Davy (1778−1829) desarrolla la electroquímica (nombre asignado por él mismo), explorando el uso de la pila de Volta o batería, y tratando de entender como ésta funciona. En 1801 observa el arco eléctrico y la incandescencia en un conductor energizado con una batería. Entre 1806 y 1808 publica el resultado de sus investigaciones sobre la electrólisis, donde logra la separación del Magnesio, Bario, Estroncio, Calcio, Sodio, Potasio y Boro. En 1807 fabrica una pila con más de 2000 placas doble, con la cual descubre el Cloro y demuestra que es un elemento, en vez de un ácido. En 1815 inventa la lámpara de seguridad para los mineros. Sin ningún lugar a duda, el descubrimiento más importante lo realiza ese mismo año, cuando descubre al joven Michael Faraday y lo toma como asistente.
En 1819 , El científico Danés Hans Christian Oersted ( 1777−1851 ) descubre el electromagnetismo, cuando en un experimento para sus estudiantes, la aguja de la brújula colocada accidentalmente cerca de un cable energizado por una pila voltaica, se movió. Este descubrimiento fue crucial en el desarrollo de la Electricidad, ya que puso en evidencia la relación existente entre la electricidad y el magnetismo. Oersted es la unidad de medida de la Reluctancia Magnética.
En 1823, Andre−Marie Ampere (1775−1836) establece los principios de la electrodinámica, cuando llega a la conclusión de que la Fuerza Electromotriz es producto de dos efectos: La tensión eléctrica y la corriente eléctrica. Experimenta con conductores, determinando que estos se atraen si las corrientes fluyen en la misma dirección, y se repelen cuando fluyen en contra. Ampere produce un excelente resultado matemático de los fenómenos estudiados por Oersted. Ampere es la unidad de medida de la corriente eléctrica.
En 1826, El físico Alemán Georg Simon Ohm (1789−1854) fue quien formuló con exactitud la ley de las corrientes eléctricas, definiendo la relación exacta entre la tensión y la corriente. Desde entonces, esta ley se conoce como la ley de Ohm. Ohm es la unidad de medida de la Resistencia Eléctrica.
En 1831, Michael Faraday (1791−1867) a los 14 años trabajaba como encuadernador, lo cual le permitió tener el tiempo necesario para leer y desarrollar su interés por la Física y Química. A pesar de su baja preparación formal, dio un paso fundamental en el desarrollo de la electricidad al establecer que el magnetismo produce electricidad a través del movimiento. El Faradio es la unidad de medida de la Capacitancia Eléctrica. La tensión inducida en la bobina que se mueve en campo magnético no uniforme fue demostrada por Faraday.
En 1835, Samuel Morse (1791−1867), mientras regresaba de uno de sus viajes, concibe la idea de un simple circuito electromagnético para transmitir información, El Telégrafo. En 1835 construye el primer telégrafo. En 1837 se asocia con Henry y Vail con el fin de obtener financiamiento del Congreso de USA para su desarrollo, fracasa el intento, prosigue solo, obteniendo el éxito en 1843, cauando el congreso le aprueba el desarrollo de una línea de 41 millas desde Baltimor hasta el Capitolio en Washington D.C. La cual construye en 1844.
En 1840−42, James Prescott Joule (1818−1889) Físico Inglés, quien descubrió la equivalencia entre trabajo mecánico y la caloría, y el científico Alemán Hermann von Helmholtz (1821−1894), quien definió la primera ley de la termodinámica demostraron que los circuitos eléctricos cumplían con la ley de la conservación de la energía y que la Electricidad era una forma de Energía. Adicionalmente, Joule inventó la soldadura eléctrica de arco y demostró que el calor generado por la corriente eléctrica era proporcional al cuadrado de la corriente. Joule es la unidad de medida de Energía.
En 1845, Gustav Robert Kirchhoff (1824−1887) Físico Alemán a los 21 años de edad, anunció las leyes que permiten calcular las corrientes, y tensiones en redes eléctricas. Conocidas como Leyes de Kirchhoff I y II. Estableció las técnicas para el análisis espectral, con la cual determinó la composición del sol.
En 1854, El matemático Inglés William Thomson (Lord Kelvin) (1824−1907), con su trabajo sobre el análisis teórico sobre transmisión por cable, hizo posible el desarrollo del cable transatlántico. En 1851 definió la Segunda Ley de la Termodinámica. En 1858 Inventó el cable flexible. Kelvin es la unidad de medida de temperatura absoluta.
En 1870, James Clerk Maxwell (1831−1879) Matemático Inglés formuló las cuatro ecuaciones que sirven de fundamento de la teoría Electromagnética. Dedujo que la Luz es una onda electromagnética, y que la energía se transmite por ondas electromagnéticas a la velocidad de la Luz. Maxwell es la unidad del flujo Magnético.
En 1879, el Físico Inglés Joseph John Thomson (1856−1940) demostró que los rayos catódicos estaban constituido de partículas atómicas de carga negativas la cual el llamó ¨Corpúsculos¨ y hoy en día los conocemos como Electrones.
En 1881, Thomas Alva Edison (1847−1931) produce la primera Lámpara Incandescente con un filamento de algodón carbonizado. Este filamento permaneció encendido por 44 horas. En 1881 desarrolló el filamento de bambú con 1.7 lúmenes por vatios. En 1904 el filamento de tungsteno con una eficiencia de 7.9 lúmenes por vatios. En 1910 la lámpara de 100 w con rendimiento de 10 lúmenes por vatios. Hoy en día, las lámparas incandescentes de filamento de tungsteno de 100 w tienen un rendimiento del orden de 18 lúmenes por vatios. En 1882 Edison instaló el primer sistema eléctrico para vender energía para la iluminación incandescente, en los Estados Unidos para la estación Pearl Street de la ciudad de New York. El sistema fue en CD tres hilos, 220−110 v con una potencia total de 30 kw.
En 1884, Heinrich Rudolf Hertz (1847−1894) demostró la validez de las ecuaciones de Maxwell y las reescribió, en la forma que hoy en día es conocida. En 1888 Hertz recibió el reconocimiento por sus trabajos sobre las Ondas Electromagnéticas, propagación, polarización y reflexión de ondas . Con Hertz se abre la puerta para el desarrollo de la radio. Hertz es la unidad de medida de la frecuencia.
VIDEO CAPITULO 2
VIDEO. CAPITULO 3
1. Introducción a la Electrónica
La electrónica es el campo de la ingeniería y de la física aplicada relativo al diseño y aplicación de dispositivos, por lo general circuitos electrónicos, cuyo funcionamiento depende del flujo de electrones para la generación, transmisión, recepción, almacenamiento de información, entre otros. Esta información puede consistir en voz o música como en un receptor de radio, en una imagen en una pantalla de televisión, o en números u otros datos en un ordenador o computadora.
Los circuitos electrónicos ofrecen diferentes funciones para procesar esta información, incluyendo la amplificación de señales débiles hasta un nivel que se pueda utilizar; el generar ondas de radio; la extracción de información, como por ejemplo la recuperación de la señal de sonido de una onda de radio (demodulación); el control, como en el caso de introducir una señal de sonido a ondas de radio (modulación), y operaciones lógicas, como los procesos electrónicos que tienen lugar en las computadoras.
2. Antecedentes históricos
La introducción de los tubos de vacío a comienzos del siglo XX propició el rápido crecimiento de la electrónica moderna. Con estos dispositivos se hizo posible la manipulación de señales, algo que no podía realizarse en los antiguos circuitos telegráficos y telefónicos, ni con los primeros transmisores que utilizaban chispas de alta tensión para generar ondas de radio. Por ejemplo, con los tubos de vacío pudieron amplificarse las señales de radio y de sonido débiles, y además podían superponerse señales de sonido a las ondas de radio. El desarrollo de una amplia variedad de tubos, diseñados para funciones especializadas, posibilitó el rápido avance de la tecnología de comunicación radial antes de la II Guerra Mundial, y el desarrollo de las primeras computadoras, durante la guerra y poco después de ella.
John Ambrose Fleming
(Lancaster, 1849 - Sidmouth, 1945) Físico e ingeniero electrónico británico que inventó la válvula termoiónica. Estudió en el University College, en el Royal College of Chemistry de Londres y en la Universidad de Cambridge, donde fue discípulo de Maxwell. Tras una serie de intermitentes empleos en la docencia, consiguió el nombramiento como profesor de tecnología eléctrica en el University College de Londres (1885) y como Profesor en la Universidad de Londres (1910).
Su contribución al desarrollo de las aplicaciones eléctricas al telégrafo es notable. La mayor aportación de este investigador lo constituye la construcción de la válvula termoiónica, diodo rectificador de la corriente eléctrica basado en el llamado efecto Edison, quien había descubierto en 1860 que entre el filamento y una placa situada en el interior de una lámpara de incandescencia circula una corriente de muy baja intensidad.
La patente de Fleming consistía en un tubo de vacío en cuyo interior se encuentran un filamento en estado de incandescencia que hace las veces de cátodo y un ánodo. Cuando se mantiene el ánodo a un potencial positivo con respecto al cátodo la corriente eléctrica puede fluir, pero no en sentido contrario.
Este elemento rectificador de la corriente eléctrica fue muy utilizado en los primeros aparatos de radio y televisión y en ordenadores durante la primera mitad del siglo XX, hasta que la invención del transistor, más barato y resistente, lo relegó al olvido. También es de Fleming la popular regla de la mano derecha para determinar el sentido del campo magnético que produce una corriente eléctrica.
(Lancaster, 1849 - Sidmouth, 1945) Físico e ingeniero electrónico británico que inventó la válvula termoiónica. Estudió en el University College, en el Royal College of Chemistry de Londres y en la Universidad de Cambridge, donde fue discípulo de Maxwell. Tras una serie de intermitentes empleos en la docencia, consiguió el nombramiento como profesor de tecnología eléctrica en el University College de Londres (1885) y como Profesor en la Universidad de Londres (1910).
Su contribución al desarrollo de las aplicaciones eléctricas al telégrafo es notable. La mayor aportación de este investigador lo constituye la construcción de la válvula termoiónica, diodo rectificador de la corriente eléctrica basado en el llamado efecto Edison, quien había descubierto en 1860 que entre el filamento y una placa situada en el interior de una lámpara de incandescencia circula una corriente de muy baja intensidad.
La patente de Fleming consistía en un tubo de vacío en cuyo interior se encuentran un filamento en estado de incandescencia que hace las veces de cátodo y un ánodo. Cuando se mantiene el ánodo a un potencial positivo con respecto al cátodo la corriente eléctrica puede fluir, pero no en sentido contrario.
Este elemento rectificador de la corriente eléctrica fue muy utilizado en los primeros aparatos de radio y televisión y en ordenadores durante la primera mitad del siglo XX, hasta que la invención del transistor, más barato y resistente, lo relegó al olvido. También es de Fleming la popular regla de la mano derecha para determinar el sentido del campo magnético que produce una corriente eléctrica.
A finales de la década de 1940, la electrónica no tenía mayor consideración que la de ser una rama secundaria de la electricidad. Aunque por aquel entonces ya existían aparatos que podrían tener al menos exteriormente, cierto aspecto de "electrónicos", como receptores de radio, tocadiscos o rudimentarias máquinas de calcular no dejaban de ser circuitos y piezas puramente eléctricas unidas mediante cables. Las investigaciones en busca de mejoras, tanto en las propiedades como, sobre todo, en el tamaño de las válvulas, dieron origen a la aparición de unos nuevos materiales llamados semiconductores, que a su vez provocaron la creación de una nueva disciplina tecnológica denominada electrónica.
1887 - Heinrich Hertz, físico alemán, corrobora la predicción de James Clerk Maxwell creando el primer transmisor de radio, generando radiofrecuencias. Desarrolló también un sistema para medir la velocidad (frecuencia) de las ondas de radio. En su honor la unidad de medida de frecuencia se denomino Hertz (o Hertzio).
1888 - El ingeniero inglés Oberlin Smith ideó y publicó, los principios básicos para grabar sonido en un soporte magnético.
1897 - El físico inglés J. J. Thomson descubre la existencia de una partícula eléctricamente cargada, el electrón. En el año de 1906 Thomson recibió el Premio Nóbel de Física por su descubrimiento.
1897 - Ferdinand Braun, científico Alemán, perfecciona el TRC o Tubo de Rayos Catódicos agregando al Tubo de Crookes una superficie de fósforo que se iluminaba al recibir los rayos catódicos. Desarrolla el primer osciloscopio.
1897 - Guillermo Marconi ingeniero eléctrico italiano, introduce en el Reino Unido la primer patente de la Radio.
1898 - El danés Valdemar Poulsen desarrolló y patentó el telegráfono, una grabadora de sonido que emplea alambre de acero como soporte magnético.
1899 - J.J. Thomson establece que las cargas que se liberaban al calentar una superficie metálica son electrones.
1901 - Guillermo Marconi, logra la primer transmisión telegráfica inalámbrica a través del Atlántico
1903 - El físico británico John Ambrose Fleming encuentra una aplicación práctica de la válvula termoiónica de efecto Edison, que posteriormente de denominaría: "Diodo", al usarlo como detector de ondas electromagnéticas. John Ambrose Fleming es considerado "el padre de la electrónica".
1906 - El físico estadounidense Lee de Forest agrega un nuevo electrodo en forma de rejilla entre el cátodo y el ánodo del tubo al vacío. Este electrodo permite regular el paso de electrones. Nace así el Triodo, primer dispositivo amplificador electrónico.
1913 - El físico estadounidense Edwin Howard Armstrong desarrolla el primer circuito oscilador basado en un Triodo.
1920, 23 de Febrero - se trasmite el primer programa público de radio en Inglaterra.
1924 - El escocés John Logie Baird, usando el disco explorador de imagen de Nipkow, logra trasmitir imágenes por ondas de radio. Nacía la Televisión electromecánica.
1928 - El ingeniero alemán Fritz Pfleumer patentó la primera cinta magnética, constituida por una delgada capa de hierro magnetizable sobre una cinta de papel. Años después, la patente fue revocada, pues el principio básico ya había sido patentado por el danés Valdemar Poulsen en 1898.
1929 - Se realizan las primeras emisiones públicas de televisión, por la BBC en Inglaterra.
1930 - Se perfeccionan los tubos electrónicos de vacío, nacen el Tetrodo y Pentodo con más elementos entre el cátodo y el ánodo.
1932 - La empresa alemana A.E.G. realiza los primeros ensayos para la construcción de grabadoras de cinta. La firma IG Fabenindustrie propone como soporte una cinta plástica: el acetato de celulosa.
1933 - Edwin Howard Armstrong inventa un nuevo tipo modulación de señal: la FM (frecuencia modulada).
1935 - El Magnetófono hizo su aparición pública en la Exposición Radiotécnica de Berlín. Y cinco años después H.J. von Braunmuhl y W. Weber introdujeron la premagnetización de alta frecuencia, que permitió una gran mejora en la grabación del sonido.
1936 - El ingeniero austriaco Paul Eisler mientras trabajaba en Inglaterra, creo el primer circuito impreso como parte de un receptor de radio.
1946 - Percy Spencer, ingeniero de la Raytheon Corporation, descubre los efectos de las microondas sobre los alimentos. Inventa el Horno de Microondas.
1947 - Un equipo de ingenieros y científicos encabezados por los doctores John W. Mauchly y J. Prester Eckert en la Universidad de Pennsylvania, Estados Unidos, crean: ENIAC (Electronic Numerical Integrator and Computer), primera computadora digital electrónica. Fue una máquina experimental. No era programable como las computadoras actuales. Era un enorme aparato que ocupa todo el sótano en la Universidad de Pennsylvania. Tenía 18,000 tubos electrónicos, consumía varios KW y pesaba algunas toneladas. Realizaba hasta cinco mil sumas por segundo.
1947, 16 de diciembre - Fue creado el primer transistor, por William Shockley, John Bardeen, y William Brattain en los laboratorios Bell.
1950 - Salen al mercado los primeros magnetófonos comerciales, eran de cinta en carrete abierto.
1951 - Los doctores Mauchly y Eckert fundan la compañía Universal Computer (Univac), que produce la primera computadora comercial: UNIVAC I.
1955 - SONY lanza al mercado el primer receptor de radio totalmente transistorizado el TR-55.
1958 - El ingeniero Jack Kilby de la compañía norteamericana Texas Instruments, creó el primer circuito completo integrado en una pastilla de silicio, lo llamó "circuito integrado". Casi simultáneamente el ing. Robert Noyce de Fairchil Semiconductor desarrolla un dispositivo similar al que llamó: "circuito unitario". A ambos se los reconoce como los creadores de los circuitos integrados.
1962, 10 de Julio - Fue lanzado el Telstar 1 primer satélite de comunicaciones de uso comercial.
1962 - Nick Holonyak, ingeniero de General Electric desarrolla el primer LED (Light Emitting Diode o Diodo Emisor de Luz) que emitía en el espectro visible.
1962 - Sony lanza al mercado mundial el primer televisor de 5 pulgadas, completamente transistorizado.
1963 - Philips presentara el popular “Compact Cassette”. Otros fabricantes habían desarrollado diversos tipos de cartuchos de cinta magnética, pero ninguno de ellos alcanzo la difusión mundial de este, por su bajo costo, tamaño y practicidad.
1965 - Gordon Moore, trabajando en Fairchild Semiconductor (tres años después fundaría Intel), predijo que la integración de circuitos crecería a un ritmo que duplicaría el número de transistores por chip cada dos años. Esta predicción se ha cumplido hasta la fecha y se le conoce como: "Ley de Moore".
1968 - Fairchild Semiconductor produce el primer circuito integrado regulador de voltaje lineal el uA723. Poco tiempo después lanza al mercado la serie 7800 que incluye los populares 7805 (de 5V), etc.
1971 - Ted Hoff, Federico Faggin de Intel y Masatoshi Shima de Busicom (ZiLOG) diseñan el primer microprocesador, el Intel 4004.
1975 - JVC lanza al mercado el sistema de grabación de audio y video analógico para uso domestico: VHS (Video Home System).
1976 - Sony lanza al mercado el sistema de grabación de audio y video analógico: Betamax.
1979 - Philips y Grundig de Alemania desarrollan el Video 2000 (Video Cassette compacto, o VCC) para competir con VHS de JVC y Betamax de Sony.
1982, 17 de agosto - La empresa Philips fabrica el primer Compact Disc en Hannover (Alemania), desarrollado en forma conjunta por Philips y Sony.
1988 - Se integra el MPEG (Moving Picture Experts Group o Grupo de Expertos de Imágenes en Movimiento), para desarrollar estándares de codificación de audio y video (MPEG-1, MPEG-2, ... MP3, etc).
1995 - Un consorcio de empresas entre las que destacan Philips, Sony, Toshiba, Time-Warner, Matsushita Electric, Hitachi, IBM, Mitsubishi Electric, Pioneer, Thomson y JVC, lanzan la primer versión del estándar DVD.
VIDEO- Transistorized!
Hoy día, el transistor, inventado en 1948, ha reemplazado casi completamente al tubo de vacío en la mayoría de sus aplicaciones. Al incorporar un conjunto de materiales semiconductores y contactos eléctricos, el transistor permite las mismas funciones que el tubo de vacío, pero con un coste, peso y potencia más bajos, y una mayor fiabilidad. Los progresos subsiguientes en la tecnología de semiconductores, atribuible en parte a la intensidad de las investigaciones asociadas con la iniciativa de exploración del espacio, llevó al desarrollo, en la década de 1970, del circuito integrado. Estos dispositivos pueden contener centenares de miles de transistores en un pequeño trozo de material, permitiendo la construcción de circuitos electrónicos complejos, como los de los microordenadores o microcomputadoras, equipos de sonido y vídeo, y satélites de comunicaciones.
Sea como fuere, tanto en electricidad como en electrónica, el movimiento de los electrones es el motivo fundamental del funcionamiento de sus circuitos; la única diferencia es que la segunda utiliza componentes tales como las válvulas, los semiconductores y los circuitos integrados, a los que genéricamente se denomina elementos activos en oposición a los usados en electricidad (resistencias, condensadores, bobinas etc.), llamados elementos pasivos. Gracias a tales elementos activos, la electrónica se constituye en una ciencia cuyo objetivo primordial es ser una perfecta herramienta para obtener, manejar y utilizar información. Como ya hemos dicho, los componentes son elementos básicos con los que se construyen circuitos, y desempeñan, por lo tanto, las funciones elementales de la electrónica. Cada circuito, ya sea eléctrico o electrónico ha de contener, por lo menos, un componente pasivo que actué como conductor y que provoque la circulación de una corriente eléctrica por dicho circuito.
3. Avances recientes
El desarrollo de los circuitos integrados ha revolucionado los campos de las comunicaciones, la gestión de la información y la informática. Los circuitos integrados han permitido reducir el tamaño de los dispositivos con el consiguiente descenso de los costes de fabricación y de mantenimiento de los sistemas. Al mismo tiempo, ofrecen mayor velocidad y fiabilidad. Los relojes digitales, las computadoras portátiles y los juegos electrónicos son sistemas basados en microprocesadores. Otro avance importante es la digitalización de las señales de sonido, proceso en el cual la frecuencia y la amplitud de una señal de sonido se codifica digitalmente mediante técnicas de muestreo adecuadas, es decir, técnicas para medir la amplitud de la señal a intervalos muy cortos. La música grabada de forma digital, como la de los discos compactos, se caracteriza por una fidelidad que no era posible alcanzar con los métodos de grabación directa.
La electrónica médica a llegado hasta a sistemas que pueden diferenciar aún más los órganos del cuerpo humano. Se han desarrollado asimismo dispositivos que permiten ver los vasos sanguíneos y el sistema respiratorio. También la alta definición promete sustituir a numerosos procesos fotográficos al eliminar la necesidad de utilizar plata.
La investigación actual dirigida a aumentar la velocidad y capacidad de las computadoras se centra sobre todo en la mejora de la tecnología de los circuitos integrados y en el desarrollo de componentes de conmutación aún más rápidos. Se han construido circuitos integrados a gran escala que contienen varios centenares de miles de componentes en un solo chip. Han llegado a fabricarse computadoras que alcanzan altísimas velocidades en las cuales los semiconductores son reemplazados por circuitos superconductores que utilizan las uniones de Josephson y que funcionan a temperaturas cercanas al cero absoluto.
La Electrónica está presente en todos los ámbitos de nuestra vida:
¿Crees que sería igual nuestro entorno sin los avances experimentados por esta disciplina?
¿Podrían hacerse viajes espaciales?
¿Podrías ver desde tu casa los Juegos Olímpicos?
¿Podrías estar realizando esta actividad?
No hay comentarios:
Publicar un comentario